The Role of a Clinical Statistician in Drug Development

By: Jackie Reisner
Types of studies within clinical development

- Phase I
- Phase II
- Phase III
- Phase IV
Phase I

- First Human Dose (FHD)
- Young healthy individuals
 - Usually males
 - Although sometimes patients (e.g. oncology drugs)
- Usually 12-24 patients
- Trials usually not sized based on statistics
 - Unless bioequivalence study
Phase I

- Assay drug and metabolites in biological fluids
- Define pharmacokinetics (PK)
 - mechanisms of absorption and distribution
 - chemical changes of the substance in the body (e.g. by metabolic enzymes)
 - effects and routes of excretion of the metabolites of the drug.
 - In summary “what the body does to the drug”
Define pharmacodynamics (PD)

- biochemical and physiological effects of drugs on the body
- or on microorganisms or parasites within or on the body
- mechanisms of drug action
- the relationship between drug concentration and effect
- In summary “what the drug does to the body”
Phase I

- Intense observation, usually hospitalized
- Identify and monitor target organ toxicity
 - Target organ based on toxicology results, other drugs in class
Phase I

- Types of Phase 1 Studies
 - Single dose, dose escalation
 - Multiple dose
 - Drug-drug interactions
 - May be conducted during Phase I, II or III
- Special Populations
 - Elderly, Pediatric, Hepatically Impaired, Renally Impaired
 - Usually performed during Phase III
- Bioequivalence/Bioavailability
Phase I role of statistician

- Work with PK/PD scientists to write the protocol
- Create the analysis plan
- Analyze the results using SAS (other software?)
 do you mostly write your own code, create your own tables?
- Work with PK/PD scientists to write a clinical study report
Phase I methodology

- Descriptive statistics
- PK/PD modeling of dose response
- Analysis of variance
- Mixed effects model
- Crossover studies
- Power/Sample Size calculation
Phase I example

Summary statistics of plasma concentrations

<table>
<thead>
<tr>
<th>Scheduled timepoint</th>
<th>n</th>
<th>Mean</th>
<th>Geometric mean</th>
<th>%Coefficient of Variation</th>
<th>SD</th>
<th>Min</th>
<th>Median</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-dose</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>0.5 hour</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>1 hour</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>1.5 hours</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>2 hours</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>3 hours</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>4 hours</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>6 hours</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>8 hours</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>12 hours</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
<tr>
<td>24 hours</td>
<td>xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
<td>xx.xx</td>
</tr>
</tbody>
</table>
Phase II

- Small trials (typically 100-300 patients) in patients with the disease
- Determine optimal efficacious dose (Phase IIA)
- Determine how well the drug works ~ efficacy (Phase IIB)
- Evaluate safety in patients
Phase II

- Some designed as case series, demonstrating a drug's safety and activity in a selected group of patients.
- Randomized clinical trials
 - some patients receive the drug/device and others receive placebo/standard treatment
 - far fewer patients than randomized Phase III trials
Phase II

- Powered for primary objective
 - Underpowered for secondary objectives
 - Underpowered for subset analyses

- Secondary objectives
 - Exploratory in anticipation of larger Phase III trials
 - Exploratory subset analyses
Phase II role of statistician

- Assist in design of the study
- Review literature
- Methods of analysis
- Conduct simulation analyses to help with complex designs (e.g. adaptive designs)
- Sample size
- Meet with cross-functional team, including medical and statistical consultants
- Meet with regulatory agency as appropriate
Phase II role of statistician

- Write the statistical analysis plan (SAP)
- Design tables/listings/graphs for summarizing data
- Help/prepare analysis programs
- Perform interim analysis
- Determine patients evaluability
- Analyze data, draw conclusions from analysis and write up results
Phase II methodology

- Descriptive statistics
- PK/PD modeling of dose response
- Analysis of variance
- Mixed effects model
- Crossover studies
- Power/Sample Size calculation
Phase II example
Phase III

- Large clinical trials (300-3000) in patients with the disease
- Multi-center trials
- Typically randomized, double-blind and placebo or active comparator controlled
- 2 or more trials
- Pivotal trials in registration dossier
- Most expensive, time-consuming and difficult trials to design and run, especially in therapies for chronic medical conditions
Phase III

- Less homogeneous patient population than Phase II
- Relax inclusion/exclusion criteria to match treatment population
- Confirmatory of efficacy
 - Subset analyses of efficacy
Phase III

- Determine safety
- Concomitant medications
- Comorbid conditions
- Powered for efficacy
- Powered for specific safety issues
 - Subset analyses – age, race, gender
Phase III role of statistician

- Assist in design of the study
- Review literature
- Methods of analysis
- Conduct simulation analyses to help with complex designs (e.g. adaptive designs)
- Sample size
- Meet with cross-functional team, including medical and statistical consultants
- Meet with regulatory agency as appropriate
Phase III role of statistician

- Write the statistical analysis plan (SAP)
- Design tables/listings/graphs for summarizing data
- Help/prepare analysis programs
- Perform interim analysis
- Determine patients evaluability
- Analyze data, draw conclusions from analysis and write up results
Phase III methodology

- Categorical Analysis
- Logistic regression
- Relative Risk
- Mixed effects model
- Repeated measures
- Multiple Comparison
- Meta-Analysis
- Outliers
- Missing data
- Survival analysis
- Power/Sample Size calculation
Phase III example
Non-Statistical skills – Influence

- Demonstrate your value:
- Become an indispensable member of the team by offering ideas of innovative designs, analyses, data summarization methods, and data presentation
- Educate and learn!
Non-Statistical skills – relationship building

- Don’t assume your cross-functional teammates understand even the very basic concepts
- Don’t bombard them with statistical technical terminology
- Don’t make them feel stupid!

- TEACH THEM!
Non-Statistical skills - communication

- Teachers always learn. Always assume others know something you don’t.
- Never say “It can’t be done.” Suggest an alternative way. This will start a dialogue in search of the best solution.
- Don’t raise problems and walk away. Offer a solution.
- Never say “This is unclear.” Say, “I am not sure I understand. Can you explain it again to me?”
Non-Statistical skills - leadership

- Be a teacher: listen and offer your ideas (remember: they know you’re smart even if they tell statistician’s jokes)
- Be creative: offer doable solutions that will make everyone look good (“the way we have always done it” may be safe but ineffective)
- Be proactive: think ahead and prepare for the expected
- Have fun!
About me

- 7 years at mid-size Pharma company
 - NDA submission
 - FDA interactions
 - Spent almost entire time on one compound studying multiple diseases

- 3 years at large Pharma company
 - NDA submission
 - Spent almost entire time on one compound studying one disease

- 7 years at large contract research organization
 - Many different study designs
 - Many different phases of development
 - Many different therapeutic areas