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Outline

2 Business needs for using advanced statistical modelling tool to
build effective control strategy through life-cycle

Achieve robustness goal through continuous process verification
Control analytical performance is critical

BMS’s vision in delivering analytical performance through continuous
analytical verification

2 Bayesian’s advantages in establishing risk-based control
strategy

2 A case study on protein concentration method
a Summary and next steps
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Robustness through Continuous Process Verification
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Understand Sources of Variance
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Raw materials + Processes + Environment + Analytical Method = Quality Variations

To what degree should each source of variance be controlled to meet the
robustness goal?
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History
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Need for Advanced Statistical Modelling

Process/Product Analytical Methods
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Bayesian Hierarchical Modeling

Frequentist Bayesian
P(data | performance) VS. P(performance | observed data
+ prior information)

1 Convenient connection of complex analytical and process
components

1 Natural and principled way of combining prior information (e.g.
historical process and analytical data)

J Continuous learning capability based on accumulated knowledge

[ Predictive inference (posterior distribution) based on varied
hypotheses

[ Uncertainty about future performance
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Build Risk-based Control Strategy

Update priors
and posteriors %

CONTROL
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A Case Study




Background

0 CQA: Drug Content (DP) / Protein Concentration (DS)

0 Target of Control

Elements of Acceptance Criteria
Control

DS Protein

Concentration * 45.0-55.0 mg/mL

DP Drug Content * 400-480mg

DP Fill Weight e 8.923-9.381 mg/vial

System Suitability (SS): 3 tests on Reference Material (RM)
Analytical i.  RSD of the three £2.0%
Variability ii. Average of the three within * 2.5% difference from the RM lot
(DS & DP) release value (49.7%)

Note: same method for DS and DP with different execution labs

J Problem: To what degree the analytical method should be controlled, such
that process performance of DS and DP won’t be significantly impacted?
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Understanding the Variabilities
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Reference Material Trends

LabA LabB LabC

52 -
R P N SO Proposed (+3.0%)
R R 7 o 1 R S AR Current (+2.5%)
3 Mt
'E ] | I.“ll | “ =| 4 1
E 504} N e | sl »
— | AR T y = _J
s “ lill.r 0T |ae | f_I' m e p'-r' Ik B B adlell ' CoA
2 . R L O 0 94
o i I-; ;I ( ||II| | I |I| ,I' I I | II 1 | | I' II | ll' ﬁli c 2 ﬂ;"
R P M m.--ﬁ----1.1-5-?1_91--@----5 R R RRReE ' | SRR urrent (-2.5%)
10 __ ............................................... -i.l ............ [ —L ....... LE.I} .pr,-i_ ........ J-_ ..... S o PI'QDIJSEd {-313%}
e
@{L‘f\ ‘&(ﬁ;\ P @{P@ a;ﬁ"@ @{g\ @{»@ . 5 @{g\ @}{ES\ @{»@ a;;{"@ @(@»\
& W S AN . - T A - - AN

Consideration of the lab factor into the risk assessment.
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Modeling Flow
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Model 1: Analytical Variability of DS Lab

Objective:

= QObtain predictive inference for true DS protein concentration.

= (Obtain predictive inference for analytical variability from DS lab.

Data: Measured DS and the matching SS results (average of three RM). N=34

PC" ~ PC + A,

P CiDS ~ N (:uDS 7O-DS)

A,,SS,,SS,,8S, ~ N(u™>,0™)

SS r’jjm Z SS, /(3- CoA) - I(LowerCriteria,UpperCriteria)  SS criteria on mean

k=1,2,3
DS

lui ~ N(/"Mu’ )

Priors:

Lips ~ N(50.100) & ps ~U(0.100)

Ay, ~ N(0.100) Ty ~ U(0.10) c  ~ U(0.])

where PCPS is the protein concentration for the it DS lot (i= 1, 2, ..., 34); #°,0 is the

population mean and standard deviation for analytical error under the same testing circumstance

in DS lab (repeatability); u,..z,, isthe population mean and standard deviation for analytical

error under varied testing circumstance in DS lab (intermediate precision); #,s.0,s DS process

méeéh and process standard deviation &% Bristol Myers Squibb



Model 2: DP Fill Weight

Objective: Obtain predictive inference for filling weight of individual vials
Data: Fill weight batch mean, and within batch standard deviation (N = 10)

FW, ~ N(FW,,0,)
FW, ~ N(i,,0,)

1
T, -~ - r(aaﬂ)
o)

I

Priors:

1, ~ N(9.152.,100) & ~U(0,10)
o ~T(0.0010.001) B ~T(0.001,0.001)

where FIW;; is the fill weight for the j*" vial (j = 1, 2, ..., 200) from the i" lot (i=1, 2, ...,
10) .
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Model 3: Analytical Variability of DP Lab

Objective: Obtain predictive inference for analytical variability from DP Lab
Data: Measured DP and the matching SS results

A,,SS,,SS,,88, ~ N(u'",0°")
SSPF -~ ZSS . /(3-CoA)- I(LowerCriteria,UpperCriteria) SS criteria on mean

report
k=1,2,3

DP

w1~ Ny, 00)

Priors:

Ly, ~ N(0,100) Oy ~ U(0.5) o ~ U(0.)

where u.",0," is the population mean and standard deviation for analytical error under
the same testing circumstance in DP lab (repeatability); u,,.,o,,, is the population mean
and standard deviation for analytical error under varied testing circumstance in DP lab
(intermediate precision).
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Model 4: Predict DP drug content

Objective:
= QObtain predictive inference on true DP drug content.

Data: predicted true DS protein concentration (Model 1), predicted DP fill weight per vial
(Model 2), analytical errors for DS and DP lab (Model 1, 3)

PC;)P.ObS* — PC;)P* +A*2
| SSP™ |< WRS Criterion

repor

where PCP5* is predicted true protein concentration for the it DS lot from Model 1; PC}}P* is simulated true
protein concentration for the jth vial (j = 1, 2,..., 200) produced from the ith DS lot (i= 1, 2, ..., N) ; PC/°P**
is the estimated tested protein concentration for the jth vial produced from the it" DS lot.
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Prediction: Distribution of System Suitability Results

DS Lab
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Widening the SS criteria will
reduce the failure rate by > 6%
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RM has small chance of
failing either SS criteria
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Simulation Result: SS vs. Analytical Error (DS)

True Analytical Error in the Measured Results
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Relative difference between System Suitability Results
and RM Release Value (%)

Widening the SS
criteria from 2.5% to
3.0% will potentially
introduce more
negative analytical
error into the DS
results.

But, is this of critical
impact to the product
performance?
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Simulation Result: DS Protein Concentration

Distribution of Observed DS data with System Suitability Criteira of 2.5% vs. 3.0%
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Impact of SS criteria on DS Cpk is relatively small.
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Simulation Result: DP Drug Content

Distribution of Measured DP Drug Content

1 {m M=446.416, 5=10.352 Vial Out-of-Specification
(O0S) Risks (proportion of
s failures in 200x10,000
§ = simulated vials):
 2.5%5SS:0.114%
e 3.0%SS:0.114 %

400 420 440 460 480 500

Measured DP Drug Content %

Impact of SS criteria on DP OOS risk is small.
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Summary and Next Steps

0 Connecting process and analytical performances in a life-cycled
manner is critical when establishing risk-based control strategy.
0 Bayesian is a proper modeling tool for risk-based control:

Convenient connection of analytical and process components
Proper leverage of prior information

Predictive inferences about future results

Continuous learning capability.

O A case study illustrated the Bayesian method in modeling the impact
of system suitability criterion on capability performance for a protein
concentration method.

0 Model potentials:
Update the model with accumulated knowledge

Expanding to other sources of variances
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Questions?




