Facilitating Efficient Review: A Graphics-Driven Approach to Interim Safety Reporting

Midwest Biopharmaceutical Statistics Workshop
Muncie, Indiana – May 23, 2017

Contact: Kevin Buhr <buhr@biostat.wisc.edu>
Statistical Data Analysis Center
Department of Biostatistics and Medical Informatics
University of Wisconsin – Madison
Contributors

Statistics Collaborative

– Matt Downs
– Janelle Rhorer
– Janet Wittes

University of Wisconsin

– Robin Bechhofer
– Kevin Buhr
– Tom Cook
Outline

• Introduction
• Organization of DMC reports
• Specific Analyses and Presentations
Part 1

INTRODUCTION
Structure of a clinical trial

Steering Committee → Pharmaceutical Industry Sponsor → Regulatory Agencies

Data Management Center (Sponsor or Contract Research Organization) → Clinical Centers → Participants

Central Units (Labs, etc.) → Institutional Review Boards
Structure of a clinical trial

- Steering Committee
- Independent Data Monitoring Committee
- Statistical Reporting Group
- Pharmaceutical Industry Sponsor
- Regulatory Agencies
- Data Management Center (Sponsor or Contract Research Organization)
- Central Units (Labs, etc.)
- Institutional Review Boards
- Clinical Centers
- Participants
Independent Data Monitoring Committees (IDMCs)

• Review interim data to ensure
 – Safety of participants
 – Integrity of the trial

• Meet periodically in open, closed, and exec sessions
 – Open (IDMC+SRG+Sponsor+Exec Committee Chair)
 • Operational update
 • New information on safety
 • Regulatory developments
 – Closed (IDMC+SRG)
 • Review of unblinded emerging safety (and often efficacy) data
 – Executive (IDMC)
Statistical Reporting Group (SRGs)

- Our experience is as an external group serving as an independent statistical DMC reporting center
- Receive data from Sponsor, CRO, or directly from other units (e.g., blinded laboratory data)
- Receive actual randomization codes to conduct unblinded analyses
- Prepare, distribute, and present IDMC reports at meetings
The IDMC report

- Provides analyses of trial conduct, safety, and efficacy by treatment
- Reviewed during the closed session
- Most important source of information for IDMC decision-making
And Yet....

Many reports are

• Badly organized
• Long, unclear, unfocused
• Full of errors, inconsistencies, and bad statistics
• Poorly suited to meet the DMC’s needs
Disorganized

- Report is an email with a zip file (no context):
Disorganized

• Stack of binders (no table of contents)
Disorganized

- Tabs, but not descriptive labels
Too much (but not useful) information

Protocol XXXXXX - Data cut-off date: 01DEC2015

Table 1
ECG shift table based on notable values by treatment
Safety population

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Baseline n (%)</th>
<th><=450 n (%)</th>
<th>>450 - 480 n (%)</th>
<th>>480 - 500 n (%)</th>
<th>>500 n (%)</th>
<th>Missing n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (N=150)</td>
<td>150 (100)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>147 (98.0)</td>
</tr>
<tr>
<td>Group B (N=82)</td>
<td>82 (100)</td>
<td>2 (2.4)</td>
<td>1 (1.2)</td>
<td>0</td>
<td>0</td>
<td>79 (96.3)</td>
</tr>
<tr>
<td>Total (N=232)</td>
<td>232 (100)</td>
<td>3 (1.3)</td>
<td>2 (0.9)</td>
<td>0</td>
<td>1 (0.4)</td>
<td>226 (97.4)</td>
</tr>
</tbody>
</table>

Slowly reached conclusion: all data are missing!

- Baseline percentage is based on N. Percentage for worst value is based on Baseline n.
Table 8 (Page 1 of 44)
Adverse events, regardless of study treatment relationship, by primary system organ class, preferred term and maximum CTC AE grade and treatment - Grade 1/2, Grade 3 and Grade 4

<table>
<thead>
<tr>
<th>Primary system organ class</th>
<th>Group A N=192</th>
<th></th>
<th></th>
<th>Group B N=98</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1/2 n (%)</td>
<td>Grade 3 n (%)</td>
<td>Grade 4 n (%)</td>
<td>Grade 1/2 n (%)</td>
<td>Grade 3 n (%)</td>
<td></td>
</tr>
<tr>
<td>Any primary system organ class</td>
<td>87 (45.3)</td>
<td>76 (39.6)</td>
<td>20 (10.4)</td>
<td>44 (44.9)</td>
<td>41 (41.8)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td>12 (6.3)</td>
<td>4 (2.1)</td>
<td>1 (0.5)</td>
<td>3 (3.1)</td>
<td>3 (3.1)</td>
<td></td>
</tr>
<tr>
<td>Leukopenia</td>
<td>6 (3.1)</td>
<td>3 (1.6)</td>
<td>0</td>
<td>1 (1.0)</td>
<td>2 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Haemolytic anaemia</td>
<td>2 (1.0)</td>
<td>0</td>
<td>0</td>
<td>1 (1.0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Increased tendency to bruise</td>
<td>1 (0.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lymph node pain</td>
<td>1 (0.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (1.0)</td>
<td>1 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>1 (0.5)</td>
<td>1 (0.5)</td>
<td>1 (0.5)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>1 (0.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>0</td>
<td>1 (0.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Where are Grade 4 AEs?
Table 8 (Page 2 of 44)

Adverse events, regardless of study treatment relationship, by primary system organ class, preferred term and maximum CTCAE grade and treatment – Grade 1/2, Grade 3 and Grade 4

<table>
<thead>
<tr>
<th>Primary system organ class</th>
<th>Preferred term</th>
<th>Group B N=98</th>
<th>Grade 4 n (%)</th>
<th>Grade 1/2 n (%)</th>
<th>Grade 3 n (%)</th>
<th>Grade 4 n (%)</th>
<th>Total N=290</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Any primary system organ class</td>
<td></td>
<td>9 (9.2)</td>
<td>131 (45.2)</td>
<td>117 (40.3)</td>
<td>29 (10.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td></td>
<td>0</td>
<td>15 (5.2)</td>
<td>7 (2.4)</td>
<td>1 (0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukopenia</td>
<td></td>
<td>0</td>
<td>3 (1.0)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemolytic anaemia</td>
<td></td>
<td>0</td>
<td>1 (0.3)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased tendency to bruise</td>
<td></td>
<td>0</td>
<td>1 (0.3)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph node pain</td>
<td></td>
<td>0</td>
<td>1 (0.3)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphopenia</td>
<td></td>
<td>0</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td></td>
<td>0</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1 (0.3)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aha! There they are – on the next page!
Part 2

ORGANIZATION OF DMC REPORTS
Comprehensive but Comprehensible

• Comprehensive:
 – Must include all potentially relevant information
 – Report requirements: specifications & mock Tables, Listings, & Figures (TLFs) may dictate content

• Comprehensibility can suffer:
 – Risk of overwhelming with detail
 – Tendency to include useless analyses
 – Too much information makes it hard to present in an organized way
Pity the Poor DMC Member

DMC members are busy people with day jobs, and they:

• may serve on multiple DMCs for confusingly similar trials
• usually experience long intervals between reports
• always have limited time to review the report
The report must be a convenient document to work with:

- Single PDF document / hardcopy binder
- Table of contents, list of figures, captions, chapter separators, consecutive page numbers (!)
- Clear separation of “main” and supplementary material / appendices
- Hierarchical organization (chapters, sections)
Example Table of Contents

Contents

1. Introduction .. 1
2. Available data ... 2
3. Accrual, demographics, and baseline characteristics ... 2
4. Treatment .. 16
5. Safety .. 18
 5.1. Deaths .. 18
 5.2. Adverse events and serious adverse events .. 21
 5.3. Laboratory Results ... 57
6. Efficacy .. 62
7. Appendix A – Additional adverse event tables and listings .. 71
8. Appendix B – Laboratory boxplots over time ... 169
Bring the Reader up to Speed

The report must quickly (re)orient the reader to the trial:

• Introduction: purpose of report, data sources, general statistical and display conventions
• Protocol summary (i.e., summary of trial)
• Minutes from previous meeting
Use Efficient Presentations

The organization and presentation of analyses must allow DMC members to:
• Review the most critical analyses
• Easily locate a topic of interest
• Quickly obtain an overview for the topic
• Drill down to additional detail, as necessary

The SRG should also:
• Present analyses in a self-contained manner
• Use simple, familiar presentation elements when possible
• Leverage similarities, using similar presentations for similar analyses
Part 3

SPECIFIC ANALYSES AND PRESENTATIONS
Categories of Information

• Trial conduct
 – Accrual and subject disposition
 – Treatment adherence
 – Data availability

• Baseline data

• Safety data
 – Adverse events
 – Laboratory data

• Efficacy data
 – Clinical endpoint events
 – Tumor response
Accrual – Key Questions

- How is accrual progressing as compared to what was projected?
- Are certain sites dominating the accrual?
- What is the geographic breakdown in an international trial?
Cumulative Accrual (with projections, if possible)
Distribution of Sites by # Accrued
Accrual by Region and Country

<table>
<thead>
<tr>
<th>Randomization by Region and Country</th>
<th>Date First Subject Randomized</th>
<th>Most Recent Subject Randomized</th>
<th>Number of Sites Randomizing Subjects</th>
<th>Number of Subjects Randomized</th>
<th>Subjects Per Site (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* OVERALL *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>May 4, 2007</td>
<td>May 27, 2008</td>
<td>120</td>
<td>775</td>
<td>6.5</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td>38</td>
<td>273</td>
<td>7.2</td>
</tr>
<tr>
<td>* REGION TOTAL *</td>
<td>May 22, 2007</td>
<td>May 27, 2008</td>
<td>53</td>
<td>369</td>
<td>7.0</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Jun 16, 2007</td>
<td>Apr 26, 2008</td>
<td>10</td>
<td>57</td>
<td>5.7</td>
</tr>
<tr>
<td>Spain</td>
<td>Jun 19, 2007</td>
<td>May 9, 2008</td>
<td>4</td>
<td>21</td>
<td>5.3</td>
</tr>
<tr>
<td>Germany</td>
<td>Jun 26, 2007</td>
<td>Apr 17, 2008</td>
<td>5</td>
<td>23</td>
<td>4.6</td>
</tr>
<tr>
<td>Portugal</td>
<td>Aug 30, 2007</td>
<td>Feb 12, 2008</td>
<td>3</td>
<td>16</td>
<td>5.3</td>
</tr>
<tr>
<td>Norway</td>
<td>Aug 21, 2007</td>
<td>Feb 18, 2008</td>
<td>3</td>
<td>16</td>
<td>5.3</td>
</tr>
<tr>
<td>France</td>
<td>Jul 10, 2007</td>
<td>Mar 24, 2008</td>
<td>3</td>
<td>28</td>
<td>9.3</td>
</tr>
<tr>
<td>Italy</td>
<td>Aug 10, 2007</td>
<td>Jan 31, 2008</td>
<td>3</td>
<td>12</td>
<td>4.0</td>
</tr>
<tr>
<td>Sweden</td>
<td>Aug 27, 2007</td>
<td>Apr 24, 2008</td>
<td>3</td>
<td>19</td>
<td>6.3</td>
</tr>
<tr>
<td>Finland</td>
<td>Jul 16, 2007</td>
<td>May 13, 2008</td>
<td>3</td>
<td>26</td>
<td>8.7</td>
</tr>
<tr>
<td>* REGION TOTAL *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subject Disposition – Key Questions

• Are subjects discontinuing from treatment early?
 – If so, what are the reasons?
 – Do they differ by treatment group?
• Are subjects who have d/c treatment continuing to be followed?
• What is the cumulative exposure/follow-up of subjects on study?
Most Recent Subject Status

![Graph showing the current status of randomized subjects. The graph divides subjects into categories: Dead, Withdrawn from study, On study, Off treatment, and On study, On treatment. The Y-axis represents the percentage of subjects, and the X-axis lists the categories. The graph includes bars for subjects A and B, indicating the distribution of subjects across these statuses.]
Reasons for W/D from Study or Treatment

- Subject died: 11.9% for A, 5.7% for B, p < 0.003
- Consent withdrawn: 6.2% for A, 2.4% for B
- Lost to follow-up: 2.9% for A, 3.1% for B
- Adverse event: 19.4% for A, 14.7% for B
- Protocol violation: 1.8% for A, 0.5% for B
- Pregnancy: 1.8% for A
- Subject request: 13.7% for A, 9.8% for B
- Other: 3.4% for A, 2.3% for B

Reason Off Study:
- Subject died: 16% for A, 8.5% for B, p < 0.002
- Consent withdrawn: 7% for B, 2.3% for A
- Lost to follow-up: 2.3% for A
- Other: 0% for A, 0.3% for B

nA = 388, nB = 387

% of Subjects
Group A
Randomized as of DATE
N=147

Follow-up data in CRF database
N=141

Known to have discontinued tx
N = 65 (42%)

Disc. b/c of progression or death
N=73 (52%)

Continued to be followed for progression after tx disc
N=6

Disease progression or death during monitoring for progression
N=2

In follow-up for survival or vital status known
N=73

Not known to have discontinued tx
N = 82 (58%)

Disc. treatment for other reasons
N=9 (6%)

No further follow-up for progression
N=3

Disease progression or death not observed
N=4

In follow-up for survival or vital status known
N=6

Follow-up for survival

3 refused further follow-up for survival

In follow-up for survival or vital status known
N=0

Post-treatment evaluation for progression

In follow-up for survival or vital status known
N=0
Time to Early Discontinuation

Event Probability over Time

pA, B = 0.041

% of Subjects Terminating Early

nEvents A - 138
nEvents B - 158

Time from Randomization (days)
Follow-up Time
Data Availability – Key Questions

• How recent are the data included in the report?

• How much data are available relative to what would be expected based on dates of study entry and data cut-off?
Data Currency

Cumulative distribution of time from last visit in database to data cut-off date

![Graph showing cumulative distribution of time from last visit to data cut-off date]
Data Availability

Figure 2. Available eCRF data during the Follow-up Phase

- Month 18: Some visit data contained in EDC database
- Month 15: Some visit data contained in EDC database
- Month 12: Some visit data contained in EDC database
- Month 9: Some visit data contained in EDC database
- Month 6: Some visit data contained in EDC database
- Month 3: Some visit data contained in EDC database
- End of treatment: Some visit data contained in EDC database

Legend:
- □: Expected, assuming real-time collection
Adverse Events – Key Questions

• Are there differences in AE rates by treatment?
• What types of AEs are being experienced?
• How about certain categories of events?
 – Serious (SAE) events?
 – Events of Grade 3 or higher?
 – Events leading to alteration or termination of treatment?
 – Pre-specified events of interest?
• Are certain events more common in one or more treatment group than in others?
• When are events occurring? Early in the treatment? Are they recurrent?
Challenges in Reporting of AEs

• Separating signal from noise
 – Important to draw attention to important issues, while not sacrificing completeness of reporting

• Identifying appropriate categories, groupings of MedDRA terms
 – Summarize by SOC, HLT
 – Use SMQs
 – Ask DMC if there are combinations of interest
Adverse Events - Presentation

• Overall summaries
 – Incidence of any AEs meeting certain criteria: serious, severe, related, causing treatment modification, death

• Comprehensive data
 – Summaries by System Organ Class (graphics)
 – Summaries by SOC and Preferred Term (tables)

• Presentation style
 – Graphics: bar charts, stacked bars, dot plots
 – Incidence tables: with or without p-values
 – Listings: for selected categories
AE Overview Graphic

Overview

- Any AE: 50.3% in A, 49.9% in B
- AE possibly related to investigational product: 19.3% in A, 21.4% in B
- Severe AE: 4.6% in A, 4.1% in B

Actions Taken with IP Due to AE

- IP withdrawn: 14.2% in A, 16.3% in B
- Dose reduced: 24.5% in A, 22.5% in B
- Dose interrupted: 10.3% in A, 8.3% in B

Subject Actions Taken Due to AE

- Withdrawn from study: 4.4% in A, 4.7% in B

nA = 388, nB = 387
Adverse Events by SOC
Table by SOC and Preferred Term

AEs by SOC, High Level Term and Preferred Term

Cardiac disorders

<table>
<thead>
<tr>
<th>MedDRA High Level Term</th>
<th>Preferred Term</th>
<th>N Subjects (Events)</th>
<th>Percent of Subjects</th>
<th>P-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>ALL</td>
</tr>
<tr>
<td>OVERALL</td>
<td></td>
<td>98 (181)</td>
<td>75 (136)</td>
<td>173 (317)</td>
</tr>
<tr>
<td>Accelerated and malignant hypertension</td>
<td></td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Malignant hypertensive heart disease</td>
<td></td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Breathing abnormalities</td>
<td></td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Cardiac asthma</td>
<td></td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Cardiac and vascular procedural complications</td>
<td></td>
<td>1 (1)</td>
<td>2 (4)</td>
<td>3 (5)</td>
</tr>
<tr>
<td>Coronary artery perforation</td>
<td></td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Myocardial oedema</td>
<td></td>
<td>1 (1)</td>
<td>1 (2)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Cardiac conduction disorders</td>
<td></td>
<td>1 (1)</td>
<td>3 (4)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Bundle branch block</td>
<td></td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Long QT syndrome</td>
<td></td>
<td>0 (0)</td>
<td>2 (3)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Cardiac disorders NEC</td>
<td></td>
<td>1 (1)</td>
<td>3 (4)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Cardiac disorder</td>
<td></td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Cardiotoxicity</td>
<td></td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Intracardiac mass</td>
<td></td>
<td>0 (0)</td>
<td>2 (3)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Cardiac hypertensive complications</td>
<td></td>
<td>1 (2)</td>
<td>0 (0)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td></td>
<td>1 (2)</td>
<td>0 (0)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Cardiac signs and symptoms NEC</td>
<td></td>
<td>1 (1)</td>
<td>1 (2)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Positive cardiac inotropic effect</td>
<td></td>
<td>1 (1)</td>
<td>1 (2)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Cardiac valve disorders NEC</td>
<td></td>
<td>2 (2)</td>
<td>3 (3)</td>
<td>4 (5)</td>
</tr>
</tbody>
</table>
Most Common by Preferred Term

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>pA,B</th>
<th>nA = 388</th>
<th>nB = 387</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic obstructive airway</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>0.845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>0.088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>0.157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>0.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinusitis</td>
<td>0.338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury</td>
<td>0.794</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection viral</td>
<td>0.871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coughing</td>
<td>0.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>0.138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back pain</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinitis</td>
<td>0.891</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Mild
- Moderate
- Severe
Potential Treatment Difference

Adverse Events, by MedDRA Term
Occurring in > 0.5% of Subjects in Either Treatment Group
with a Nominally Significant (p < 0.1) Difference between Treatments

(NB: Since preferred terms are coded within high level terms, the same event may be counted under both categories.)

<table>
<thead>
<tr>
<th>Relative Frequency</th>
<th>System Organ Class</th>
<th>High Level Term (HLT) or Preferred Term (PRT)</th>
<th>Treatment Group</th>
<th></th>
<th></th>
<th>ChiSq P-val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More in A</td>
<td>Cardiac disorders</td>
<td>HLT: Myocardial disorders NEC</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLT: Ventricular arrhythmias and cardiac arrest</td>
<td>14</td>
<td>3.6%</td>
<td>4</td>
<td>1.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRT: Angina pectoris</td>
<td>27</td>
<td>7.0%</td>
<td>14</td>
<td>3.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRT: Ventricular extrasystoles</td>
<td>6</td>
<td>1.5%</td>
<td>1</td>
<td>0.3%</td>
</tr>
<tr>
<td>More in B</td>
<td>Vascular disorders</td>
<td>HLT: Aortic aneurysms and dissections</td>
<td>0</td>
<td>0.0%</td>
<td>3</td>
<td>0.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLT: Haemorrhages NEC</td>
<td>0</td>
<td>0.0%</td>
<td>3</td>
<td>0.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLT: Non-site specific vascular disorders NEC</td>
<td>0</td>
<td>0.0%</td>
<td>6</td>
<td>1.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRT: Aortic aneurysm</td>
<td>0</td>
<td>0.0%</td>
<td>3</td>
<td>0.8%</td>
</tr>
</tbody>
</table>
Figure 8. Volcano plot of AE risk differences by high level term (HLT)
Laboratory Data – Key Questions

• Are there any safety concerns as reflected in the laboratory data?
• Is the treatment having the anticipated effect on targeted lab parameters? (e.g. lipids)
• If there are treatment-related changes in lab parameters, do the differences persist over time?
• Is there any evidence that subjects are experiencing drug-induced liver injury?
Lab Data - Challenges

• Quantity of data
 – There may be 50+ different tests performed by the laboratory
 – Lab data may be collected/analyzed at many visits during follow-up

• How to present data without overwhelming DMC
 – Focus on a subset of tests/timepoints
 – Organize analytes into logical subsets (not alphabetically)
 – Identify potential abnormalities of interest
 – Present data in a way that makes even large quantities of information easy to review
Summary for Abnormal Hematology

Ever Below LLN

- White Blood Cells: 19.6% (A), 17.1% (B)
- Red Blood Cells: 40.7% (A), 39.8% (B)
- Hemoglobin: 34.8% (A), 43.7% (B)
- Hematocrit: 50.3% (A), 49.1% (B)
- Platelets: 14.7% (A), 15.8% (B)

Ever Above ULN

- White Blood Cells: 6.4% (A), 7.8% (B)
- Red Blood Cells: 3.1% (A), 1.6% (B)
- Hemoglobin: 1% (A), 1.3% (B)
- Hematocrit: 1.3% (A), 2.1% (B)
- Platelets: 1.5% (A), 3.9% (B)
Per-Analyte Summary Page

• Standard graphical lab page by visit
 – Box-plots
 • Presentation of data over time
 • Change from baseline by visit
 – Bar charts (simple or stacked)
 • Abnormalities (perhaps stacked), both high and low
 – Annotations
 • Number of observations, p-values
 – Visually easy to compare treatment groups and see trends over time

• Once DMC members are familiar with layout, can review a lot of data in a short period of time
Drilling Down to Specific Subjects

• Box-plots show shift in distribution but may mask subjects at extremes (if > 95th percentile)
• Extreme cases can be examined in detail with per-subject plots or listings – e.g., subjects with LFTs > 3xULN
 – Include information about treatment, dose adjustment, early discontinuation, etc.
 – Adverse events, other clinical events
 – Multiple lab measures displayed together
Liver Function Test Summary

Highest Elevation after Baseline

<table>
<thead>
<tr>
<th>Test</th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine Aminotransferase</td>
<td>12%</td>
<td>10.1%</td>
</tr>
<tr>
<td>Aspartate Aminotransferase</td>
<td>7.3%</td>
<td>9.2%</td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td>16.2%</td>
<td>14.8%</td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>10.6%</td>
<td>9.5%</td>
</tr>
</tbody>
</table>

Elevations of Potential Clinical Concern

- ALT or AST Ever >=3xULN
- ALT or AST Ever >=3xULN and Bilirubin Ever >=2xULN

- Group A:
 - 0.3%
 - 0%

- Group B:
 - 0.6%
 - 0%
LFT Per-Patient Plot

![Graph showing LFT Per-Patient Plot with days from randomization on the x-axis and multiples of ULN on the y-axis]
How It Fits Together

• SDAC sample report
Report Length

• A common criticism
• Pogue and Sackett\(^1\)

 – *When we wrote to 21 colleagues from 6 countries ... [with] a single exception, they reckoned they were wasting time looking [at] reports they’d received that often exceeded a kilogram in weight, and in one case ran to 3000 pages.*

• Describe a hypothetical case of a 120-page, 88-table report that the DMC struggles to understand

• State that a good report must *surely* be less than 3000 pages and *clearly* less than 120 pages

Their Recommendations

- Describe a one-page summary, the “MISER”
- Suggest a report template with 25 tables/figures
- Also suggest that a figure can replace several tables (and may be “worth” a dozen of them)
Our Experience

• Most SDAC reports are 150-350 pages
• May start small (<100 pages) but grow as the program does
• Some get very large indeed
Our Experience

Very large, indeed...

Report Length over Time

- DMC Meeting Report
- Monthly Safety Report

Pages

0 6 12 18 24 30

Months
Large Reports

• May be a natural consequence of:
 – Multi-trial programs
 – Large collection of pre-specified analyses mandated by regulatory agencies or Protocol / DMC Charter
 – Analyses requested by DMC to address a particular concern that are no longer “needed”

• High page count does not, in and of itself, compromise usability
 – With respect to the 6000-page report, the DMC repeatedly remarked on their ability to efficiently review the information and refused our offers to find ways to abbreviate the analyses

• A well-organized report is useful even when very large
Take-Home Points

• DMC reports are the key decision-making tool
• Too often, organization and presentations are neglected
• Efficient review can be facilitated by:
 – Document structure
 – Top-down presentation of analyses
 – Emphasis on graphical presentations using simple, familiar graphical elements and leveraging similar presentations across multiple analyses
• Even massively comprehensive reports can be made comprehensible
Thank you!

• Questions?
Contact Information

• Kevin Buhr <buhr@biostat.wisc.edu>