Bayesian Logistic Regression for Medical Claims Data

Ivan Zorych, Patrick Ryan, David Madigan
Outline

- Drug safety data
- Problems with 2x2 approaches
- Bayesian logistic regression for SRS data
- Bayesian logistic regression approach to observational data
Typical Entry in SRS database

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Drug 1</th>
<th>Drug 2</th>
<th>...</th>
<th>Drug 15000</th>
<th>AE 1</th>
<th>AE 2</th>
<th>...</th>
<th>AE 16000</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Male</td>
<td>No</td>
<td>Yes</td>
<td>...</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>...</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- SRS datasets resemble spreadsheets with up to millions of rows (one per report) and tens of thousands of columns
Existing Methods

- Multi-item Gamma Poisson Shrinker (MGPS)
 - US Food and Drug Administration (FDA)
- Bayesian Confidence Propagation Neural Network
 - WHO Uppsala Monitoring Centre (UMC)
- Proportional Reporting Ratio (PRR)
 - UK Medicines Control Agency (MCA)
- Reporting Odds Ratios and Incidence Rate Ratios
 - Other national spontaneous reporting centers and drug safety research units
Different Measures

<table>
<thead>
<tr>
<th>Measure of Association</th>
<th>Formula</th>
<th>Probabilistic Interpretation</th>
</tr>
</thead>
</table>
| RR
Relative Risk* | \[
\frac{a^* (a + b + c + d)}{(a + c)^* (a + b)}
\] | \[
\frac{\Pr(\text{ae} | \text{drug})}{\Pr(\text{ae})}
\] |
| PRR
Proportional Reporting Ratio | \[
\frac{a}{(a + b)} \quad \frac{c}{(c + d)}
\] | \[
\frac{\Pr(\text{ae} | \text{drug})}{\Pr(\text{ae} | \neg \text{drug})}
\] |
| ROR
Reporting Odds Ratio | \[
\frac{a}{c} \quad \frac{b}{d}
\] | \[
\frac{\Pr(\text{ae} | \text{drug})}{\Pr(\neg \text{ae} | \text{drug})} \div \frac{\Pr(\text{ae} | \neg \text{drug})}{\Pr(\neg \text{ae} | \neg \text{drug})}
\] |
| Information Component | \[
\log_2 \frac{a^* (a + b + c + d)}{(a + c)^* (a + b)}
\] | \[
\log_2 \frac{\Pr(\text{ae} | \text{drug})}{\Pr(\text{ae})}
\] |
Innocent bystander problem

- Contingency table analysis ignores effects of drug-drug association on drug-AE association

<table>
<thead>
<tr>
<th></th>
<th>Rosinex</th>
<th>No Rosinex</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nausea</td>
<td>No Nausea</td>
<td>Nausea No Nausea</td>
</tr>
<tr>
<td>Ganclex</td>
<td>81</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>No Ganclex</td>
<td>9</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>OR</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Logistic Regression

\[
\log \frac{\Pr(Nausea)}{\Pr(Not \ Nausea)} = \beta_0 + \beta_1 \times \text{Rosinex} + \beta_2 \times \text{Ganclex}
\]

- SAS and R-package give the following estimations:
 - beta1=4.4, beta2=0
 - Adjusted odds ratio exp(beta2)=1 indicates no association between Ganclex and Nausea.
Regression and health data

- Drug safety data sets are sparse
- Typical AERS report contains just a few drugs and a few adverse events
- Dependent variable in the regression:
 \[Y = 1 \text{ if AE is present, } 0 \text{ otherwise}; \]
- Number of independent variables = number of drugs + sex/age/year info
Ridge logistic regression*

- Maximum likelihood
- and restrictions on coefficients:

\[
\sum_{j=1}^{P} \beta_j^2 \leq s
\]

Profiles of the regression coefficients
Lasso*

- Maximum likelihood
- and restrictions on coefficients:

\[\sum_{j=1}^{P} |\beta_j| \leq s \]

- Does subset selection by shrinking some coefficients to zero

*Tibshirani (1996)
Profiles of the regression coefficients
Bayesian Regression

- Two shrinkage methods
 - Ridge regression - Gaussian prior
 \[p(\beta_j \mid \tau) \sim N(0, \tau) \]
 - Lasso regression - Laplace prior
 \[p(\beta_j \mid \lambda) = \frac{\lambda}{2} \exp\{-\lambda |\beta_j|\} \]

- Choosing hyperparameter \(\lambda \)
 - Decide how much to shrink
 - Cross-validation: choose prior to fit left-out data
Bayesian Logistic Regression

- Software: Bayesian Binary Regression (BBR)*

 http://www.stat.rutgers.edu/~madigan/BBR/

 http://www.bayesianregression.org/

- Two priors: Gaussian and Laplace
- Hyperparameter choice: fixed, CV, etc.
- Handles millions of predictors efficiently

* D. Madigan et al., (2007), Large-Scale Bayesian Logistic Regression for Text Categorization, Technometrics, vol.49, #3.
Vioxx / Transient ischemic attack

<table>
<thead>
<tr>
<th>Year</th>
<th>N of reports</th>
<th>EBGM rank</th>
<th>BBR rank (Normal priors with CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>1</td>
<td>593</td>
<td>545</td>
</tr>
<tr>
<td>2000</td>
<td>26</td>
<td>351</td>
<td>70</td>
</tr>
<tr>
<td>2001</td>
<td>60</td>
<td>316</td>
<td>33</td>
</tr>
<tr>
<td>2002</td>
<td>100</td>
<td>431</td>
<td>55</td>
</tr>
<tr>
<td>2003</td>
<td>130</td>
<td>459</td>
<td>51</td>
</tr>
</tbody>
</table>
Confounding, real AERS data*

- ADR: hemorrhagic cystitis, diffuse inflammation of the bladder leading to dysuria, hematuria, and hemorrhage;
- ADR most often seen in female cancer patients as a complication of therapy;
- Drugs: anticancer drugs and mesna;
- Mesna is an adjuvant used in cancer chemotherapy involving cyclophosphamide and ifosfamide.

*Caster, Noren, Bate, Madigan, 2010
Masking

- Typical DP measures are based on
 \[
 \frac{\Pr(\text{AE}|\text{Drug})}{\Pr(\text{AE})}
 \]

- Masking: effect when the background rate of the ADR, \(\Pr(\text{AE}) \), is distorted due to massive reporting with other drug(s);

- Example: Rhabdomyolysis and Cerivastatin (Baycol, Lipobay) is a synthetic member of the class of statins;

- Cerivastatin was voluntarily withdrawn from the market worldwide in 2001 due to reports of fatal rhabdomyolysis.
Masking, real AERS data*

- ADR: Rhabdomyolysis, rapid breakdown of skeletal muscle;
- Drugs: a set of anti-depressant drugs;

*Caster, Noren, Bate, Madigan, 2010
Weakness of SRS Data

- Passive surveillance
 - Underreporting
- Lack of accurate “denominator”, only “numerator”
 - “Numerator”: No. of reports of suspected reaction
 - “Denominator”: No. of doses of administered drug
- No certainty that a reported reaction was causal
- Missing, inaccurate or duplicated data
Longitudinal observational data

- Health claims records, electronic medical records
- Information on drug prescriptions, doctor visits, hospitalization
BLR and observational data

- It is relatively easy to apply Bayesian regression to AERS/SRS data.
- Situation with temporal data is more complicated. We need to create predictors for the regression analysis.
Logistic regression for observational data

Prevalent X:

<table>
<thead>
<tr>
<th>Y</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Incident X:

<table>
<thead>
<tr>
<th>Y</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
BLR parameter file

CONDITION_TYPE_PREVALENT_1_INCIDENT_2: 1
PRIOR_TYPE_LAPLACE_1_NORMAL_2: 1
PRIOR_VARIANCE: 1
INCLUDE_AGE_0_(NO)_OR_1_(YES): 1
INCLUDE_SEX_0_(NO)_OR_1_(YES): 1
SIZE_OF_THE_NO_CONDITION_PART: 1000000
RISK_WINDOW_IN_DAYS: 30
DRUG_PERSISTENCE_WINDOW_DAYS_0_OR_30: 30
CONDITION_PERSISTENCE_WINDOW_DAYS_0_OR_30: 30
NUMBER_OF_SPLITS: 5
DAYS_FROM_THE_DRUG_ERA_START: 1
DRUG_ERA_TABLE: OMOP_DRUG_ERA
CONDITION_ERA_TABLE: OMOP_CONDITION_ERA
Simulated Data

- 10 000 000 persons
- 5000 drugs
- 4519 conditions; 519 of conditions are ‘indications’ that don’t have any causal relationship with drugs
- 22,595,000 drug-condition pairs;
Computational side

- Each condition requires fitting of a separate regression
- Parallelization via SAS/CONNECT
- Amazon Cloud:
 - 68.4 GB of memory
 - 26 EC2 Compute Units (8 virtual cores with 3.25 EC2 Compute Units each)
 - 1690 GB of local instance storage
- Typical performance (OSIM on the cloud): 12 hours on the cloud (24 parallel runs);
- OMOP stat server: Sun M5000 6X2
 - 2.14Ghz CPU(s)
 - 32G Memory
 - 48 Gb Swap space
- Code available from http://omop.fnih.org/MethodsLibrary
Scores for the OSIM data
OMOP cup and BLR on OSIM (Simulated Data)

<table>
<thead>
<tr>
<th>Participant</th>
<th>MAP score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>0.2662359</td>
</tr>
<tr>
<td>Participant 2</td>
<td>0.2570616</td>
</tr>
<tr>
<td>Participant 3</td>
<td>0.2569417</td>
</tr>
<tr>
<td>Participant 4</td>
<td>0.2569404</td>
</tr>
<tr>
<td>Participant 5</td>
<td>0.2568678</td>
</tr>
<tr>
<td>BLR</td>
<td>0.2557354 (same run, exclude ‘indications’)</td>
</tr>
<tr>
<td>Participant 6</td>
<td>0.2483813</td>
</tr>
<tr>
<td>Participant 7</td>
<td>0.2483137</td>
</tr>
<tr>
<td>Participant 8</td>
<td>0.2358521</td>
</tr>
<tr>
<td>BLR</td>
<td>0.2356831 (run: c2p2v1b1s0dw0cw0a0sx0)</td>
</tr>
</tbody>
</table>

...
Real DB (preliminary data)
3 Real Databases

Scatterplot Matrix
Discussion of Logistic Method

- Advantages over low-dimensional tables
 - Correct confounding and mask effect
 - Analyze multiple drugs/vaccines simultaneously

- Limitations
 - Build separate model for each AE
 - Ignore dependencies between AEs
 - Fail to adjust for unmeasured/unrecorded factors
 - health status, unreported drugs, etc.