Assessing the Similarity of Bioanalytical Methods

Jason Liao, Ph.D.
Merck Research Laboratories

Joint work with Yu Tian

2010 MBSW
Outline

• Introduction

• Existing methods & potential problems

• New method
 - Linear
 - Nonlinear

• An Example

• Summary
Introduction

• Why Similarity
 - A key assumption
 - RP

• Definition of similarity
 - Mathematically: $f(x) = g(px)$
 - Parallelism
 - P: relative potency.
Introduction (cont.)

• Target: Sufficiently Similar → Single RP

• Assessing the Similarity
 - Mathematically.
 - The assessment of the degree of similarity is very tricky between two sparse, noisy sets of non-linear dose response data sets.
 - No universal strategy
 - Two kinds of existing method:
 (1) Significance Test
 (2) Equivalence Test.
Significance Test
(linear case: Similarity⇔ Same Slopes)

- Significance Test
 Ho: Two slopes are exactly same.
 Ha: Two slopes are different;

When the precision increases....

Lab A: Good Precision
→ Not similar

Lab B: Poor Precision
→ Similar
Equivalence Test
(linear case: Similarity= Same Slopes)

• Equivalence test

Ho: |difference| ≥D Ha: |difference| <D

• The equivalence limits define differences between test and standard preparations that are considered unimportant.

 - Step1: CI for difference
 - Step2: CI vs. Equivalence limit
Equivalence Test
(linear case: Similarity= Same Slopes)

<table>
<thead>
<tr>
<th></th>
<th>Lab A</th>
<th>Lab B</th>
<th>Lab C</th>
<th>Lab D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significance test</td>
<td>Not similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Not Similar</td>
</tr>
<tr>
<td>Equivalence Test</td>
<td>Similar</td>
<td>Not Similar</td>
<td>Similar</td>
<td>Not Similar</td>
</tr>
</tbody>
</table>
Equivalence Test
(linear case: Similarity= Same Slopes)

- Fixed equivalence limit (Not vary with application)
 - $[0.8, 1.25]$ for the ratio of the slopes

- Capability based equivalence limit (Tolerance limit)
 - Manage the rate at which we falsely detect non-similarity
 - Can be assessed by evaluating reference material relative to itself.
 1. For complete reference data
 2. Pair them in all possible combination
 3. set up CI....
 4. use the most extreme boundary.
Equivalence Test
(linear case: Similarity= Same Slopes)

• DE (dilution effect)

\[DE = 100\% \left(2^{1 - \frac{bs}{br}} - 1 \right) \leq 20\% \]

- A statistic called dilution effect was introduced in the industry to assess dilution similarity. (Schofield T. 2000). The dilution effect is a measure of the percent bias per 2-fold dilution in a test samples' value relative to that of the reference standard.

- The absolute value of dilution effect less than 20% has been used in the industry to conclude dilution similarity (parallelism) between the test sample and the reference standard.

- Can lead to different conclusions if switching reference and sample positions.

- Subset data easily lead to different conclusions: 4-fold dilution subset data vs. the 2-fold dilution whole data set.
Equivalence Test
(Non-linear case)

• The data may not be linear...

• Equivalence test for the 5PL logistic function (Liao & Liu, 2009),

\[
E(Y) = D + \frac{A - D}{1 + \left(2^{1/g} - 1\right) \left(\frac{X}{C}\right)^B}^g
\]

• It has been shown that 5PL curve1 can be parallel to 5PL curve2 if and only if \(A_1 = A_2, B_1 = B_2, D_1 = D_2, g_1 = g_2\) and \(C_1 = P \cdot C_2\), where \(P\) is relative potency.
Equivalence Test (Non-linear case)

- Equivalence Test +4 parameters

 - Ho: $|A_1 - A_2| \geq a, |B_1 - B_2| \geq b, |D_1 - D_2| \geq d, |g_1 - g_2| \geq g$
 - Ha: $|A_1 - A_2| < a, |B_1 - B_2| < b, |D_1 - D_2| < d, |g_1 - g_2| < g$

“If the model is nonlinear, the contours are sometimes banana-shaped... sometimes stretch to infinity”
Drapper and Smith, Applied Regression Analysis p.543

- Multidimensional confidence regions.
 - Intersection Union region misleading
 - Nearly impossible to do on 4 pars
 - Bootstrap may help
New Method

- Equivalence approach
- Overall difference of the response: shape of the curves
- Avoid the difficulty for obtaining the boundary/region for multi-parameters
- Boundary based on reference vs reference
 - Plus practical consideration
Linear Case
New Method: J-method

- J-method: \[Y_{1i} - Y_{2i} \sim A_i + \omega_i \quad \omega_i \sim N(0, \tau^2) \]

- Parallel \(\Leftrightarrow \)
 \[A_1 = A_2 = \ldots = A_I = a_1 + b_1x - (a_2 + b_2x) = a_1 - a_2 \]

Considering variation....
New Method: J-method (cont.)

- Estimate the CI for Ai

- Construct Equivalence Limit

 (1) Width— Variation σ^2 that are considered to be acceptable Standard curve compare to itself (Tolerance Limit)

 (2) Shift— $U = a_1 - a_2$

 (3) The interval: $[U_L - 1.96 \cdot \sqrt{2\hat{\sigma}^2}, U_U + 1.96 \cdot \sqrt{2\hat{\sigma}^2}]$
New Method: J-method modification (cont.)

- Deal with large variation
 \[\log(y_1) - \log(y_2) = \log(y_1/y_2) \]

- Control the width of equivalence limit
 - 2-fold difference boundary
 \[y_1/y_2 \leq 2 \rightarrow \log(y_1) - \log(y_2) \leq \log(2) \approx 0.7 \]
 \[y_1/y_2 \geq 0.5 \rightarrow \log(y_1) - \log(y_2) \geq \log(0.5) \approx -0.7 \]
 - 3-fold difference boundary
 \[y_1/y_2 \leq 3 \rightarrow \log(y_1) - \log(y_2) \leq \log(3) \approx 1.1 \]
 \[y_1/y_2 \geq 1/3 \rightarrow \log(y_1) - \log(y_2) \geq \log(1/3) \approx -1.1 \]
Advantages of the new method

• Capture the non-linear trend

• Capture the non-homogenous variance
 - Easy to modify for non-homogenous variance

• Control the rate of falsely declaiming non-similarity
 - With practical subject knowledge consideration
Simulation Study

- Linear Case
 - F
 - DE
 - J, J2, J3
Simulation Settings

Test Sample \[Y_i = a_1 + b_1 X_i + \varepsilon_i \]
Standard Sample \[Y_i = a_2 + b_2 X_i + \delta_i \]

\[\varepsilon_i \sim N(0, \sigma^2) \quad \delta_i \sim N(0, \sigma^2) \]

\(X_i = \log(1, 2, 4, 8, 16) \) 2 fold dilution (16 to 1)
\[a_1 = a_2 = 1 \]
\[b_2 = 1 \]
\[b_1 = 1, 1.01, 1.1, 1.3, 1.5, 2 \]
RSD = 5%, 10%, 20%, 30%, 50%, 100%
3 Replicates
numbers of simulation = 1000 for each parameter setting
Comparison of different methods (DE, F, J, J2, J3), rep = 3, b1 = 1, b2 = 1, c = 0
comparison of different methods (DE,F,J,J2,J3), rep = 3, b1 = 1.1, b2 = 1, c = 0
comparison of different methods (DE,F,J,J2,J3), rep = 3, b1 = 1.5, b2 = 1, c = 0
Summary

- F: variance ↗, tends to conclude parallel

- DE: variance ↗, may not be able to get the right conclusion

- J, J2, J3: J3 works well, even when variance ↗;
 - Catch the non-linear trend
 - Catch the non-homogenous variance
 - Control the rate of false non-similarity

- New method is based on reference vs reference capability with possible practically significant boundary
Non-linear Case
New Method

• Similar idea with linear case: work on the difference of response directly instead of the curve parameters using equivalence approach
 - Avoid high dimension issues/complicated parameter region
 - Using scientific judgement about the boundary
 - Can add practical boundary into account

• However, the method cannot be applied directly on the original curve. Need to work on the transformed curve
 - Similarity:

\[f_1(x) = f_2(px) \iff f_1(x) - f_2(px) = 0 \quad \text{for any } x. \]

• Evaluate the distance of two samples after transformation:

Metric: \[||f_1(x) - f_2(px)|| \]

- Not the one \[||f_1(x) - f_2(x)|| \] (which is a constant in linear case, but not in a non-linear case)
Before Transformation

After Transformation
Before Transformation

After Transformation

a1=0 a2=0 b1=2 b2=2 c1=1.875 c2=1.875 d1=5 d2=4 g1=2 g2=2

Log(x)
Test Sample: \(\hat{Y}_{1i} = Y_{1i} \)

Estimation of the transformed standard sample:

\[\hat{y}_{2i} = f_2(p x) + \delta_i \]

where \(\hat{p} = \hat{C}_2 / \hat{C}_1 \)

\[
\begin{align*}
\hat{D}_2 + \frac{\hat{A}_2 - \hat{D}_2}{1 + (2^{1/\hat{g}_2} - 1) \cdot \left(\frac{\hat{p} \hat{X}}{\hat{C}_2} \right) \hat{g}_2} + \delta_i \\
\hat{D}_2 + \frac{\hat{A}_2 - \hat{D}_2}{1 + (2^{1/\hat{g}_2} - 1) \cdot \left(\frac{\hat{X}}{\hat{C}_1} \right) \hat{g}_2} + \delta_i
\end{align*}
\]
New Methods

- A fair measure of $||f_1(x) - f_2(px)||$

- **Method I: J-method**

- **Method II: Yu-method**
 \[
 \left\| \hat{y}_1(x) - \hat{y}_2(x) \right\|_2 = \sum_{i=1}^{n} (\hat{y}_{1i} - \hat{y}_{2i})^2
 \]

 - Tolerance Limit
 \[
 \left\| \hat{y}_1(x) - \hat{y}_2(x) \right\|_2 = \sum_{i=1}^{n} (\hat{y}_{1i} - \hat{y}_{2i})^2 < 2\hat{\sigma}^2
 \]
Simulation Study

- Nonlinear Case
 - AIC, AIC-c
 - F
 - DE
 - J, J2, J3
 - Yu
Nonlinear: 5PL model

- 5PL (Liao and Liu, 2009):
 \[Y = D + \frac{A - D}{1 + \left(2^{1/g} - 1\right) \left(\frac{X}{C}\right)^g} \]

- \(\text{Var}(y_i) = \text{constant}, \ RSD=0.1,0.5 \)

- \(a_1 \ b_1 \ c_1 \ g_1 \ d_1 \) for the test sample
 \(a_2 \ b_2 \ c_2 \ g_2 \ d_2 \) for the standard sample

- “standard” and “test” are simulated with RP=0.8

- 2-fold dilutions from 204.8 to 0.1, total 12 dilution levels

- Triplicate observations

- Number of simulation=500
Parameter settings

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Standard</td>
<td>0.2</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Test</td>
<td>0.2</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>1</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>1</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Test</td>
<td>0.2</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>0.2</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>3</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>3</td>
<td>1.875</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Standard</td>
<td>0.2</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Test</td>
<td>0.2</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>1</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>1</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Test</td>
<td>0.2</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>0.2</td>
<td>2</td>
<td>1.875</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>3</td>
<td>1.875</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>0</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>3</td>
<td>1.875</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

B

C

D

E

F

G

RSD=10%
RSD=50%
Method J J2 J3 F DE AIC AIC-c Yu

| Percent | 95.4% | 95.4% | 95.4% | 94.6% | 99.4% | 82.8% | 94.4% | 100% |

The graph shows a comparison between the standard sample and the test sample with the given parameters:

- $a_1 = 0$, $a_2 = 0$, $b_1 = 2$, $b_2 = 2$, $c_1 = 1.5$, $c_2 = 1.875$, $d_1 = 4$, $d_2 = 4$, $g_1 = 2$, $g_2 = 2$, $RSD = 10\%$, $\theta = 0$
a1=0 a2=0 b1=3 b2=2 c1=1.5 c2=1.875 d1=4 d2=4 g1=2 g2=1 RSD=10% theta=0

<table>
<thead>
<tr>
<th>Method</th>
<th>J</th>
<th>J2</th>
<th>J3</th>
<th>F</th>
<th>DE</th>
<th>AIC</th>
<th>AIC-c</th>
<th>Yu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>0.8%</td>
<td>0.8%</td>
<td>0.8%</td>
<td>0%</td>
<td>7.4%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Acceptable Assay: \((b_1,g_1)=(3,1)\) vs. \((b_2,g_2)=(2,2)\)

\[
a_1=0 \quad a_2=0 \quad b_1=3 \quad b_2=2 \quad c_1=1.5 \quad c_2=1.875 \quad d_1=4 \quad d_2=4 \quad g_1=1 \quad g_2=2 \quad \text{RSD}=10\% \quad \theta=0
\]

\[
a_1=0 \quad a_2=0 \quad b_1=3 \quad b_2=2 \quad c_1=1.5 \quad c_2=1.875 \quad d_1=4 \quad d_2=4 \quad g_1=1 \quad g_2=2 \quad \text{RSD}=50\% \quad \theta=0
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>J</th>
<th>J2</th>
<th>J3</th>
<th>F</th>
<th>DE</th>
<th>AIC</th>
<th>AIC-c</th>
<th>Yu</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%RSD</td>
<td>95.2%</td>
<td>0%</td>
<td>13.9%</td>
<td>91.0%</td>
<td>44.8%</td>
<td>78.6%</td>
<td>90.4%</td>
<td>100%</td>
</tr>
<tr>
<td>10%RSD</td>
<td>85.2%</td>
<td>85.2%</td>
<td>85.2%</td>
<td>8.4%</td>
<td>37.6%</td>
<td>2.8%</td>
<td>7.4%</td>
<td>94.2%</td>
</tr>
</tbody>
</table>

Penalize the precise assay
Summary

• Nonlinear Case
 - AIC, AIC-c: closed to F in terms of determining similarity
 - F: variance ↘, tends to reject acceptable assay
 - DE: only when ADG are equal; variance ↗, same as linear
 - J, J2, J3: Better than F, boundary...
 - Yu: Better than F, boundary...
An example

Data from a stability study
plate 4

plate 3
<table>
<thead>
<tr>
<th>Plate</th>
<th>F</th>
<th>AIC</th>
<th>AIC-c</th>
<th>DE</th>
<th>J</th>
<th>Yu</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Parallel</td>
<td>Not Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
</tr>
<tr>
<td>4</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
</tr>
<tr>
<td>5</td>
<td>Not Parallel</td>
<td>Not Parallel</td>
<td>Not Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
</tr>
<tr>
<td>6</td>
<td>Not Parallel</td>
<td>Not Parallel</td>
<td>Not Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
</tr>
</tbody>
</table>

Sensitive to trivial difference
Summary & Discussion

• New method using equivalence approach
 - On the difference of response directly
 - Not on the parameters

• Advantages of the new method
 - Have better performance than existing methods
 - Avoid high dimension issues/complicated parameter region
 - Use scientific judgement about the boundary
 - Can add practical boundary into account
 - Catch the non-linear trend
 - Catch the non-homogenous variance
 - Control the rate of false non-similarity

• Bootstrap method can be used to improve precision for small sample
Summary & Discussion (cont.)

- Heterogeneous Variance: \(\text{Var}(y) = c \cdot (y)^{2r} \)
 - New method can be easily applied
Thank You!