A meta-analytic model for Alzheimer’s Disease progression incorporating both summary-level data and patient-level data

Jim Rogers, Ph.D.
joint work with Bill Gillespie (Metrum), Kaori Ito (Pfizer) and Marc Gastonguay (Metrum)

Metrum Research Group LLC

May 27, 2009
1. Background on Alzheimer’s Disease (AD) Clinical Trials

2. Data Sources

3. Brief History of AD Progression Models

4. A Draft Working Model

5. Next Steps
Key features of clinical trials in Alzheimer’s Disease (AD)

- **Co-primary endpoints:**
 - A cognitive endpoint, typically the ADAS-cog.
 - A “global” endpoint reflecting overall clinical condition, e.g. the Clinical Dementia Rating Scale.

- **Population:**
 - Most therapies under development target mild to moderate severity.
 - Increasing interest in milder and “pre-AD” populations, however mild population is near cusp of dynamic range of ADAS-cog.

- **Study duration:**
 - Registrational trials for e.g. Donepezil were 26-30 weeks, but 18 month trials are now standard.
 - To differentiate a purely “disease modifying” (DM) drug from placebo, need to wait for cognitive decline in placebo group.
Estimated and Hypothesized Drug Effects Over Time

![Graph showing the progression of ADAS-cog scores over time for Placebo, Donepezil 10 mg QD, and Hypothetical DM treatment.](image-url)
Why use modeling and simulation?

Modeling:
- Avoid subjective selection of historical data that support our preconceptions.
- Formal articulation of basic assumptions so they can be debated.
- Honest, data-driven assessment of uncertainty.
- More (good) data → more precise estimates (especially relevant in estimating variance components)
- A model is prerequisite to simulation . . .

Simulation:
- More realistic models can be explored
- Larger class of trial designs can be explored
- Larger set of operating characteristics can be explored (e.g. probability of a significant result at the “best” dose after multiplicity adjustment).
- Predictive power is more honest than conditional power [1].
Summary data from literature

Data from systematic review of literature, assembled and published by Kaori Ito et al [2, 3], from which this is taken:

Step 1: Literature Search Criteria
- Sources: all available clinical trials in National Institute for Clinical Effectiveness ("NICE"), Medline, Embase, SBAs at FDA's CDER website (years 1990-2008)
- Key search terms: AChE inhibitor names, endpoints names (ADAS-cog, MMSE, CIBIC, etc.), and clinical trials definitions (double-blind, randomized, etc.)

Step 2: Literature Acceptance Criteria
Accept:
Literature with ADAS-cog reported if placebo group data is available from non-AChE study (i.e. Vitamin E study), keep only placebo data from that literature
Exclude:
- any duplicated literature (the same clinical data)
- duplicated data points reported with different analysis methods (selected OC over LCOF if available)
- an exploratory study (open study with number of patients <= 20)

Step 3: Further Refinement
One Study was removed from the analysis:
- only week 52 result (change from baseline) was reported, baseline ADAS-cog was not reported, and the drop-out rate was high [n=173 (baseline) to n=95 (week 52)], open study (rivastigmine)
Patient-level data

- Alzheimer’s Disease Neuroimaging Initiative (ADNI)
 http://www.adni-info.org/
 - Non-randomized, non-treatment study.
 - 2–3 year follow-up (depending on baseline status), with assessments roughly every 6 months (schedule depends on baseline status).
 - Primary endpoints are imaging and biomarker endpoints, but ADAS-cog is assessed as well.

<table>
<thead>
<tr>
<th>Number of subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>MCI</td>
</tr>
<tr>
<td>Mild AD (MMSE 20-26)</td>
</tr>
</tbody>
</table>

- Proprietary clinical trial data sets.
Brief History of Published AD Progression Models

- Disease progression model published by Holford and Peace [4, 5, 6].

\[
E[S(t)] = S(0) + \alpha \times t + E_{PBO}(t) + E_{DRUG}(Conc)
\]

- Ito et al [2, 3] developed a meta-analytic version of this model (based on summary statistics) and applied it to substantial new body of evidence. Modifications:
 - inclusion of new covariates, notably baseline severity
 - modeled drug effect directly as a function of time and dose, not using concentration as an intermediary.

\[
E[S(t)] = S(0) + \alpha \times t + E_{PBO}(t) + E_{DRUG}(t, Dose)
\]
Gillespie et al (*) derived an error structure that allows simultaneous modeling of summary-level data and patient-level data.

- Statistically sound “weighting” of residuals and random effects based on sampling theory.
- Accurately predicts:
 - observed correlations between time points (important in simulating adaptive trials or trials where primary analysis uses longitudinal data)
 - changes in marginal variance over time (important in simulating any clinical trial).

Where We Are Today

- In progress: “fusion” of models by Ito et al. and Gillespie et al.:
 - Adapting Gillespie et al. model to respect the 0–70 constraint on the ADAS-cog (described in detail in subsequent slides).
 - Incorporating research on key covariates by Kaori Ito.
 - Application of this model to summary-level literature data and ADNI data (simultaneously).
Let $ADAS_{ipk}$ denote the observed ADAS-cog score on the i^{th} occasion for the p^{th} patient in the k^{th} study.

Where it is convenient, we will use the following subscripts in place of p:
- $j = j(p)$, denoting study arm
- $d = d(i, p)$ denoting drug (not applicable for placebo)
- For example, t_{ijk} denotes the time of the i^{th} visit for all patients in arm j in study k.
Distribution of Individual Patient Scores

\[ADAS_{ipk}/70 \mid \text{patient } p \sim \text{Beta} \left(\theta_{ipk}, (1 - \theta_{ipk}) \tau \right). \]

This distribution is parameterized such that:

\[
\begin{align*}
\mathbb{E}[ADAS_{ipk}/70 \mid \text{patient } p] &= \theta_{ipk} \\
\mathbb{V}[ADAS_{ipk}/70 \mid \text{patient } p] &= \frac{\theta_{ipk}(1 - \theta_{ipk})}{\tau + 1}
\end{align*}
\]

We then model the conditional expectation as:

\[
\log \left[\frac{\theta_{ipk}}{1 - \theta_{ipk}} \right] = \alpha_{pk} t_{ipk} + \eta_{\text{intercept}, pk} + E_{\text{placebo}, ipk} + E_{\text{drug}, ipk}
\]
Fixed Effects for Placebo and Drugs

\[E_{\text{placebo},ipk} = \beta \left(e^{-k_{el}t_{ijk}} - e^{-k_{eq}t_{ijk}} \right) \]

\[E_{\text{drug},idk} = \left(\frac{D_d}{D_{\text{ref},d}} \right)^{\gamma_d} \frac{E_{\Delta,d}t_{idk}}{ET_{50,d} + t_{idk}} \]
Hierarchical Random Effects

- Inter-study random effects

\[\alpha_{\text{study},k} \sim N \left(\mu_\alpha, \psi_\alpha^2 \right) \]

\[\eta_{\text{intercept,study},k} \sim N \left(\mu_{\text{intercept}}, \psi_{\text{intercept}}^2 \right) \]

- Inter-patient random effects

\[\alpha_{pk \mid \text{study } k} \sim N \left(\alpha_{\text{study},k}, \omega_\alpha^2 \right) \]

\[\eta_{\text{intercept},pk \mid \text{study } k} \sim N \left(\eta_{\text{intercept,study},k}, \omega_{\text{intercept}}^2 \right) \]

- As shown by Gillespie *et al*, this covariance model correctly predicts the growth of the marginal variance over time.
Distribution of Sample Statistics

\[
\begin{align*}
\overline{ADAS}_{ijk}/70 \mid \text{arm } j & \sim \text{Beta} \left(\overline{\theta}_{ijk}(n_{jk}\tau_k + n_{jk} - 1), \left(1 - \overline{\theta}_{ijk}\right)(n_{jk}\tau_k + n_{jk} - 1) \right), \text{ where,} \\
\overline{\theta}_{ijk} & = \frac{1}{n_{jk}} \sum_{p:j(p)=j} \theta_{ipk}
\end{align*}
\]

Now define these “shorthand” random effects:

\[
\begin{align*}
\overline{\alpha}_{jk} & \equiv \frac{1}{n_{jk}} \sum_{p:j(p)=j} \alpha_{pk} \\
\overline{\eta}_{\text{intercept},jk} & \equiv \frac{1}{n_{jk}} \sum_{p:j(p)=j} \eta_{\text{intercept},pk} \\
\overline{\text{logit}}[\theta]_{ijk} & \equiv \overline{\alpha}_{jk} t_{ijk} + \overline{\eta}_{\text{intercept},jk} + E_{\text{placebo},ijk} + E_{\text{drug},ijk}.
\end{align*}
\]

And invoke the approximate linearity of the logit over the range of interest:

\[
\text{logit}[\overline{\theta}]_{ijk} \approx \overline{\text{logit}}[\theta]_{ijk}
\]
Linear Approximation to Logit

Points shown are observed sample means from 4 studies; all time points and all study arms are shown.
Distribution of Sample Statistics (cont’d)

Our model for $\overline{ADAS}_{ijk}/70$ results in approximately the correct gain in conditional precision, relative to a single observation:

$$\sqrt{\text{V}[ADAS_{ijk}/70 | \text{arm } j]} = \frac{\bar{\theta}_{ijk}(1 - \bar{\theta}_{ijk})}{n_{jk}(\tau_k + 1)} \approx \frac{\sqrt{\text{V}[ADAS_{ipk} | \text{patient } p]}}{n_{jk}}$$

We also get the correct gain in marginal precision by modeling the average random effects as:

$$\bar{\alpha}_{jk} | \text{study } k \sim \mathcal{N}(\alpha_{\text{study},k}, \omega_\alpha^2 / n_{jk})$$

$$\bar{\eta}_{\text{intercept},jk} | \text{study } k \sim \mathcal{N}(\eta_{\text{intercept,study},k}, \omega_{\text{intercept}}^2 / n_{jk})$$
Draft Priors (sensitivity analysis still needed)

\[E_{\Delta,\text{drug}} = \frac{(1 + b_{\text{drug}}) E^*_{\text{drug}}}{b_{\text{drug}}} \]

\[\log(E^*_{\text{drug}}) \sim \text{N}(0, 0.1) \]

\[ET_{50,\text{drug}} = \frac{t^*}{b_{\text{drug}}} ; \ t^* = 12 \text{ weeks} \]

\[b_{\text{drug}} \sim \text{U}(0, 100) \]

\[\gamma_{\text{drug}} \sim \text{U}(0.01, 10) \]

\[\mu_\alpha \sim \text{N}(0, 100) \]

\[\mu_{\text{intercept}} \sim \text{N}(0, 100) \]

\[AUC_{\text{placebo}} \sim \text{U}(0, 100) \]

\[\beta = -AUC_{\text{placebo}} / \left(\frac{1}{k_{el}} - \frac{1}{k_{eq}} \right) \]

\[k_{el} \sim \text{U}(0, 2) \]

\[k_{eq} - k_{el} \sim \text{U}(0, 2) \]

\[\psi_{\text{intercept}} \sim \text{U}(0, 10) \]

\[\omega_{\text{intercept}} \sim \text{U}(0, 10) \]

\[\psi_\alpha \sim \text{U}(0, 10) \]

\[\omega_\alpha \sim \text{U}(0, 10) \]

\[\mu_\sigma \sim \text{U}(0, 1000) \]
Example Posterior Predictive Checks

Individual Predictions:
- Study 1 arm 1
- Study 1 arm 2
- Study 1 arm 3
- Study 2 arm 4
- Study 2 arm 5
- Study 2 arm 6

Population Predictions:
- Study 2 arm 4
- Study 2 arm 5
- Study 2 arm 6

- Donepezil 5
- Donepezil 10
- Placebo 0
Transparent and Public Vetting of Models

Welcome to OpenDiseaseModels.org

Please read this page and the Overview section before doing anything else.

OpenDiseaseModels.org is an open-source disease/systems model development project. Analogous to open-source software development projects, the goal of this effort is to develop better, more useful models in a transparent and public collaborative forum.

Motivation

The motivation for OpenDiseaseModels.org is driven by the following principles:

1. Development of disease/systems models is an extremely resource-intensive effort.
2. Pre-competitive insight and resources shared across companies/institutions will lead to better systems models than could be developed by a single institution.
3. Open models, which are transparently developed and publicly vetted, will be more widely accepted and will be better positioned to impact the entire scientific/biomedical/health community.
Closing Thoughts: Statisticians and Modeling

- Most statisticians wanting to get more involved in modeling work should focus on learning three things:
 - computing
 - computing
 - computing

- On the other hand, we don’t want to become computer technicians. Don’t lose sight of the special body of knowledge and insight that has developed in the statistics discipline.
 - Think carefully about variances and correlations (they do matter!)
 - Think carefully about the data that aren’t there (missing data; selection effects; confounding).
 - Think carefully about how data will ultimately be analyzed to make decisions.
Spiegelhalter, D.J., Freedman, L.S. and Blackburn, P.R.
Monitoring clinical trials: conditional or predictive power?

Ito, K., Rosario, M., Ahadieh, S., Corrigan, B.W., French, J., Fullerton, T., Zhang, R., Lockwood, P., Zhao, Q., Qiu, R., Russell, T. and Tensfeldt, T.
A disease progression meta-analysis model for cognitive deterioration with alzheimer's disease.

A disease progression meta-analysis model in Alzheimer's disease.
Alzheimer's & Dementia (Accepted May 13, 2009).

Holford, N.H. and Peace, K.E.
Methodologic aspects of a population pharmacodynamic model for cognitive effects in alzheimer patients treated with tacrine.

Holford, N.H. and Peace, K.E.
Results and validation of a population pharmacodynamic model for cognitive effects in alzheimer patients treated with tacrine.

Holford, N.H. and Peace, K.
The effect of tacrine and lecithin in alzheimer’s disease. a population pharmacodynamic analysis of five clinical trials.